Counter Balance Squat

Der Counter Balance Squat ist eine super Übung um an der Mobilität für eine saubere Tiefkniebeuge zu arbeiten. Durch das Gegengewicht wird es leichter aufrecht zu sitzen und die oftmals fehlende Sprunggelenksbeweglichkeit auszugleichen.

{:de}Standwaage Breakdown Analysis{:}{:en}Standing Scale Breakdown Analysis{:}

{:de}In diesem Video eine Anleitung zum Erlernen der Standwaage.

Was auf dem ersten Blick wie eine ziemlich einfache Übung aussieht, ist in Realität eine koordinativ anspruchsvolle und zugleich unglaublich potente Spannungs- und Mobilitätsübung für den Unterkörper und den Rumpf.

Zum Aufwärmen und Voraktivieren der Muskulatur vor schweren Langhantelübungen oder zum Training der Beinachse ist die Standwaage absolut geeignet. Durch die Variationen (am Ende des Videos) kann die Standwaage zusätzlich erschwert werden.

Dieses Video dient natürlich nur als Anhaltspunkt – in meinem Online Coaching erhältst du viele andere Videos mit Drills und Tips um das Training noch effektiver zu gestalten.

 

{:}{:en}

In this video, a guide to learning the standing scale.

What looks like a fairly simple exercise at first glance is in reality a coordinatively demanding and at the same time incredibly potent tension and mobility exercise for the lower body and core.

The standing scale is absolutely suitable for warming up and pre-activating the muscles before heavy barbell exercises or for training the leg axis. The variations (at the end of the video) can make the standing balance even more difficult.

Of course, this video is only a guide – in my online coaching you will find many other videos with drills and tips to make the training even more effective.

 

{:}

Bulletproof Shoulders

Das Schultergelenk ist ein Gelenk, welches hauptsächlich muskulär gesichert ist – das muss auch so sein, da die Gelenkpfanne deutlich kleiner ist als der Gelenkkopf des Oberarmknochens.
Diese Tatsache ermöglicht eine sehr große Bewegungsfreiheit des Gelenks – jedoch auch eine erhöhte Verletzungsgefahr.

Viele können hier mitreden: Bewegungseinschränkungen, hier mal ein kleines Piksen, da mal ein leichtes Ziehen. Dann heißt es oftmals “Impingement”, “Frozen Shoulder” und häufig: Sportpause.

Um es erst garnicht hierzu kommen zu lassen empfehle ich präventiv dafür (gerade bei Sportarten/Alltags-/Arbeitsbewegungen mit hoher Schulterbelastung) Übungen zur Kräftigung/Mobilisation des Schultergelenks.

!!! DISCLAIMER: Wenn du Probleme mit deiner Schulter hast, KÖNNEN die Übungen helfen, aber auch die Probleme VERSCHLECHTERN. Hier ist gesunder Menschenverstand gefragt: ganz langsam und vorsichtig starten und davor abklären welche Bewegungen du besser erstmal bleiben lassen solltest. !!!

Keypoints:

• im höheren Wiederholungsbereich arbeiten
• Mechanik und Ausführung vor Gewicht
• vor Trainingseinheit zum aktivieren / nach Trainingseinheit zum Kräftigen
• im Zweifel von Trainer helfen lassen

Und hier ein weiteres Video mit 4 meiner Lieblingsübungen.

You Are As Old As Your Spine

In diesem Teil der Serie zeige ich Dir ganz einfache Bewegungen, die du immer und überall durchführen kannst um deine Wirbelsäule und die darum liegende Muskulatur zu lockern.

Oftmals wird die Muskulatur der Wirbelsäule einseitig belastet,nämlich in einer stabilisierenden Position. Rücken gerade halten UNTER ALLEN UMSTÄNDEN! Das ist zwar unter hohen Belastungen/in vielen Situationen wichtig um unsere Bandscheiben/Rückenmark/Nerven/Wirbelkörper zu schützen, allerdings sollte die Wirbelsäule auch bewegt werden!
 
Die Wirbelsäule besteht aus 24 freien Wirbeln, zwischen jedem Wirbel sitzt eine Bandscheibe, welche unter anderem den Druck, der auf die Wirbelkörper einwirkt, verteilt. Jeder Wirbel ist mit Gelenkflächen ausgestattet und erlaubt so Bewegung zwischen den einzelnen Segmenten. Optimalerweise nimmt jedes Wirbelgelenk zum Beispiel an einer Beugen der Wirbelsäule teil, wodurch der Druck gleichmäßig über die Wirbel, bzw. die Bandscheiben verteilt ist.
 
Wenn Deine Wirbelsäule durch nicht-bewegen oder einseitige Belastung an manchen Stellen steif geworden ist, also wenn sich mehrere Wirbel als Einheit bewegen, nicht wie vorgesehen einzeln, verteilen sich die Kräfte nichtmehr proportional, sondern sind auf manchen Wirbeln und deren Bandscheiben höher als auf anderen.
Dadurch ausgelöste Rückenbeschwerden sind keine Seltenheit.
 
Die Übungen kannst Du alle auf einmal machen oder Dir eine Auswahl zusammenstellen, die Du vor deinem Training, zum Aufwärmen, als Cooldown, nach dem Aufstehen, etc. durchführst.
 

Hier noch ein paar Videos, die Wirbelsäulenbewegungen zeigen:

Susan Harper von Continuum Movement mit einer Demonstration, die zeigt, wie flüssig und geschmeidig die Wirbelsäule bewegt werden kann ..

In diesem Sinne: Stay Loose!!

Nil

{:de}Beweglichkeit: Eine Grundlage für Bewegung Teil 1{:}{:en}Mobility: Basis for Movement Part 1{:}

{:de}

Was ist Beweglichkeit – ist Beweglichkeit gleich Beweglichkeit? Wer sollte beweglich sein und Warum? Und für viele ganz wichtig: Wie werde ich wieder beweglich? Und Wieso benutze ich das Wort „wieder“?

In folgendem Artikel möchte ich einen Überblick über dieses spannende Thema geben, obige Fragen (und mehr) beantworten und meine Meinung, beruhend auf eigener Erfahrung, meiner Arbeit als Trainer und dem Studium der Sportwissenschaften, bezüglich Beweglichkeit im Training und Alltag äußern.

Ich habe versucht, den Artikel so einfach wie möglich zu halten, damit er von jedem verstanden werden kann, selbst wenn die Materie komplett neu ist. Das ein oder andere lateinische Wort wird dennoch vorkommen, selbstverständlich mit nötiger Erklärung dazu.

Dies ist weder ein Artikel, der allein auf praktischen Erfahrungen beruht, noch erfüllt er alle wissenschaftlichen Standards. Allerdings wird er Dir ein sehr umfassendes Bild über das Thema Beweglichkeit geben und Dich mit dem nötigen Wissen ausrüsten, Dir selbst zu einem beweglichen Körper verhelfen zu können. Im Zweifel wende dich bitte an einen fachlich ausgebildeten Trainer/Therapeuten/o.ä. .


Zur besseren Übersicht habe ich den Text in folgende Punkte gegliedert.

1. Was ist Beweglichkeit?
1.1 Grundbegriffe
1.2 Physiologische Mechanismen
1.3 Formen der Beweglichkeit

2. Warum Beweglichkeit trainieren?
2.1 Vorteile und Effekte des Beweglichkeitstrainings
2.2 Einflussfaktoren auf die Beweglichkeit
2.3 Mythen

3. Wie werde ich beweglich?
3.1 Methoden
3.2 Zeitpunkt für das Beweglichkeitstraining

4. Zusammenfassung


1. Was ist Beweglichkeit?

Beweglichkeit betrifft uns alle. Beweglichkeit befähigt unseren Gelenken große Bewegungsausmaße realisieren zu können. Sehr viele Alltags- sowie Sportbewegungen fordern große Bewegungsausmaße. Stelle Dir zum Beispiel folgende Situation vor: Die Glühbirne deiner Deckenlampe muss gewechselt werden also nimmst du eine Leiter und machst dich daran die Glühbirne aus ihrer Fassung zu schrauben. Oder: Dir fällt auf der Straße etwas herunter also gehst du in die Hocke und hebst es auf. Oder: Du steigst in einen Bus mit ziemlich hohem Einstieg ein. Oder, oder, oder. All diese Bewegungen könnten mit stark eingeschränkter Beweglichkeit in den assoziierten Gelenken zu einem Problem werden. In Sportsituationen scheint die Rolle der Beweglichkeit noch allgegenwärtiger zu sein: ein Spagat im Turnen, der Sprung über eine Hürde beim Hürdenlauf oder die tiefe Hocke eines Sumoringers. Beweglichkeit begleitet uns auf Schritt und Tritt. Freut euch nun über folgende Zeilen die hoffentlich etwas Licht ins dunkle bringen werden!

1.1 Grundbegriffe

„Beweglichkeit ist die Fähigkeit, Bewegungen willkürlich mit der erforderlichen Schwingungsweite ausführen zu können“ oder „Eigenschaft, Bewegungen mit der erforderlichen bzw. optimalen Amplitude auszuführen, welche die durch die Gelenksysteme ermöglicht wird“ sind nur zwei der vielen Definitionen rund um das Thema Beweglichkeit. Damit diese Definitionen verstanden werden können, braucht es erst einmal die Aufklärung der Grundbegriffe. Beweglichkeit setzt sich nämlich aus mehreren Komponenten zusammen, darunter:

Gelenkigkeit, als die Schwingungsweite von Gelenken, beeinflusst durch knöcherne Strukturen,
Dehnfähigkeit, als die Dehnbarkeit von Muskeln, Sehnen, Haut und Bindegewebe. Mobilität, ein weiterer Begriff, der sehr umfassend ist und sich auf die Fähigkeit eines Gelenkes bezieht, sich frei bewegen zu können. Mobilität wird beeinflusst durch anatomisch-strukturelle Komponenten (beispielsweise durch Verknöcherungen an Gelenken), Länge und Spannung der gelenkumliegenden Muskulatur, Qualität des Gewebes (z.B. Bindegewebe wie „Faszien“) sowie der neuromuskulären Ansteuerung des Gelenkes (= wie gut kann das Nervensystem das Gelenk kontrollieren).

Weitere Begriffe wie Biegsamkeit oder Flexibilität (vom englischen flexibility) können als Synonyme zu Beweglichkeit aufgefasst werden.

Wie Ihr sehen könnt, gibt es rund um das Thema Beweglichkeit eine Menge zu erforschen, recherchieren und erzählen!

Im nächsten Abschnitt schneide ich die physiologischen Mechanismen der Thematik an und zeige auf, welche Komponenten der Beweglichkeit trainierbar sind.

1.2 Physiologische Mechanismen

Grundlage ist die Anatomie des zu dehnenden Gewebes: Muskel, Sehne, Bindegewebe, Haut – wobei ich das Thema nur ankratzen werde, da es sonst den Rahmen dieses Artikels sprengen würde. Vereinfacht gesagt haben die meisten Skelettmuskeln (jene, die willkürlich steuerbar sind und zur Bewegung des Skeletts dienen) an ihren Enden jeweils eine Sehne. Die Sehne verbindet die Muskulatur über ein Bindegewebe, dem Periost (Knochenhaut), an einem Knochen und kann so Kräfte übertragen.

tendon attach
(Quelle: http://photos1.blogger.com/img/147/2431/320/tendon%20attach.jpg)

Die Muskulatur (1) selbst besteht aus vielen Muskelfaserbündeln (2), welche sich wiederum in einzelne Fasern (3) aufgliedern lassen. Die einzelne Faser lässt sich erneut in noch kleinere Muskelfibrillen (4) aufteilen. Brechen wir das Ganze ein weiteres Mal herunter, gelangen wir zu dem Sarkomer. Dieses Sarkomer besteht aus vielen kontraktilen Einheiten, welche letztendlich dafür verantwortlich sind eine Muskelanspannung/-entspannung durchzuführen.

6333259793
(Quelle: http://www.apotheken-umschau.de/multimedia/66/94/263/6333259793.jpg)

Schematisch darstellen kann man diese Bewegung wie eine Teleskopantenne: bei Kontraktion (Anspannung) der Muskulatur gleiten die Filamente ineinander – der Muskel verkürzt sich und wird dicker. Bei Relaxation (Entspannung) gleiten die Filamente auseinander – der Muskel kommt in seine Ursprungslänge zurück. Folgendes Video zeigt dies recht anschaulich.

[youtube https://www.youtube.com/watch?v=QW3ZFtT202Y]

Die Wissenschaft ist sich bis heute nicht zu 100% sicher welche Strukturen des Sarkomers letztendlich an der Beweglichkeit beteiligt sind (Zur weiteren Recherche: Titin-Filamente, die einzigen elastischen Elemente innerhalb der Muskelfaser). Im Gegensatz dazu besteht eine Sehne vorwiegend aus Kollagen. Dieses Gewebe besitzt eine sehr gute Reißfestigkeit, was natürlich sehr wichtig ist wenn man bedenkt, dass enorme Kräfte auf sie einwirken, und lässt deswegen auch nur sehr geringe Dehnungsausmaße zu. Die Substanz die all unsere Strukturen an Ort und Stelle hält ist das Bindegewebe. Hiervon gibt es verschiedene Arten, welche verschiedene Funktionen im Körper erfüllen. Wichtig für dieses Thema ist die Tatsache, dass das Bindegewebe auch die einzelnen Fasern der Muskulatur umhüllt und den Spannungszustand mit beeinflussen kann (in diesem Artikel werde ich nicht über die verschiedenen Funktionen, wie Plastizität des Bindegewebes eingehen. Dieses ist ein spannendes und umfangreiches Thema für die nahe Zukunft). Wer will kann sich in der Zwischenzeit folgende kurze Dokumentation zum Thema Faszien anschauen:

[youtube https://www.youtube.com/watch?v=ZY3W9FFUvAU]

1418562170
(Quelle: https://image.jimcdn.com/app/cms/image/transf/none/path/sf22547969010ed89/image/ida1669d6d0b86e9e/version/1418562170/faszien.jpg)

Die Haut als Komponente trägt zumeist nur minimal zur Beweglichkeit im herkömmlichen Sinne bei und wird in diesem Artikel nicht weiter behandelt.

Was passiert nun eigentlich wenn ein Muskel gedehnt wird?

Um dieser Frage nachzugehen schauen wir uns zwei weitere Strukturen in Muskel und Sehne an: die Muskelspindeln und die Golgi-Sehnenorgane. Diese Organe sind „Spannungsmelder“ und geben unserem Gehirn Feedback über die Länge unserer Muskeln beziehungsweise Sehnen. Zu Beginn einer Dehnung geben die kontraktilen Einheiten der Sarkomere nach – das Teleskop fährt auseinander. Wird die Spannung im Muskel zu hoch schalten sich die Muskelspindeln ein und geben unseren Nervensystem das Signal: „Bevor der Muskel reißt – Muskel anspannen!“ Dieser Schutzmechanismus dient somit der Verletzungsprophylaxe und heißt „Eigenreflex“. Wenn die Dehnung in der Muskulatur trotzdem weiter zunimmt (beispielsweise bei einem Sturz – siehe Abbildung)

hammie

schalten sich die Golgi-Sehnenorgane ein, welche am Übergang von Muskel zu Sehne sitzen, und bewirken genau das Gegenteil: eine reflektorische Entspannung des selben Muskels. Dieser Mechanismus dient dazu dem Muskel eine gewisse Dehnungsreserve zu verschaffen und heißt „Spannungsreflex“. Diese Mechanismen werden wir später noch einmal bei den verschiedenen Dehnmethoden betrachten.

Welche Komponenten der Beweglichkeit sind nun trainierbar?

Die Mobilität eines Gelenks ist strukturell gesehen ungefähr zu 50% von der Gelenkstruktur und zu 50% von Muskeln (ca. 41%), Sehnen und Bändern, Bindegewebe und Haut determiniert (%-Werte sind natürlich nur ein Richtwert und nicht generalisierbar!). Die Gelenkigkeit (zur Erinnerung: knöcherne Struktur eines Gelenks) ist somit ein großer Faktor, der die Mobilität eines Gelenks beeinflussen kann. Doch wie jedes andere Gewebe im menschlichen Körper besitzt auch ein Knochen die Fähigkeit zur Adaptation. Die Anatomie eines Knochens erlaubt es ihm auf Belastungen zu reagieren und sich nach und nach dieser Belastung anzupassen. Dieser Vorgang benötigt allerdings eine Menge Geduld und vor allem Zeit. Ein Beispiel für Veränderungen von knöchernen Strukturen sind Oberschenkelkopfanpassungen im Alter (Schenkelhalswinkel).

ccd_winkel
(Quelle: http://www.medizinfo.de/becken/images/ccd_winkel.jpg)

Wenn Du nun deine Probleme mit der Beweglichkeit auf deine angeborene geringe Gelenkigkeit schiebst, bist du sehr wahrscheinlich auf dem Holzweg! In den meisten Fällen lässt sich eine sehr gute Beweglichkeit erreichen, welche vor allem auf Veränderungen in der Muskulatur (vor allem die Muskelspannung, die durch das Nervensystem aufgebaut wird) zurückzuführen ist. Als kleines Kind besaßen die meisten von uns eine optimale Beweglichkeit – diese Fähigkeit „verlernen“ nur sehr viele.

baby-squat
(Quelle: http://nicktumminello.com/wp-content/uploads/2012/11/baby-squat.jpg)

Grundlage hierfür ist das Prinzip „Use it, or Lose it“. Wie oben geschrieben unterliegt jede Struktur unseres Körpers ständiger Adaptation. Wenn du eine Struktur nicht benutzt, wieso dann bemühen diese zu erhalten? So auch die Beweglichkeit: Wenn Du einen Muskel nie bis an seine endgradige Schwingweite bringst, wird er sich auf die Länge einstellen, welche aktiv von dir genutzt wird! Demnach bedeutet Beweglichkeitstraining auch nicht den Muskel zu verlängern, sondern ihn (im Optimalfall) auf seinen ursprünglichen Spannungszustand zurückzubringen. Hier noch ein wichtiger Hinweis: die Annahme, dass sich Muskeln „verkürzen“ können ist wissenschaftlich nicht abgesichert! Bis dato gilt, dass sich die strukturelle Länge eines Muskels nicht (außer pathologisch – also krankhaft) verändern kann. Diese ist, wie wir oben festgestellt haben, durch die Länge und Anzahl der Sarkomere vorgegeben. Vielmehr besteht eine niedrigere Toleranz gegenüber einer Dehnungsspannung („Dehnschmerz“).
Die einzige Längenänderung im Muskel geschieht während An- und Entspannung (zur Wiederholung: Ineinandergleiten der kontraktilen Einheiten im Sarkomer), ist jedoch reversibel (umkehrbar).

Im nächsten Abschnitt gehe ich auf verschiedene Formen der Beweglichkeit ein und will aufzeigen, dass Beweglichkeit nicht gleich Beweglichkeit ist.

1.3 Formen der Beweglichkeit

In der Trainingslehre werden unter anderem folgende Erscheinungsformen der Beweglichkeit unterschieden:

Nach dem muskulären Aktionsmodus:

• passiv: definiert als Fähigkeit, durch das Einwirken äußerer Kräfte (Schwerkraft, Partner, eigenes
Körpergewicht) einen möglichst großen Gelenkwinkel einzunehmen.

• aktiv: definiert als Fähigkeit, eine Dehnposition durch Muskelanspannung einzunehmen. Im
Klartext: Krafttraining. Der Muskel der hier arbeitet liegt salopp gesagt auf der
gegenüberliegenden Seite des zu dehnenden Muskels.

[youtube https://www.youtube.com/watch?v=bOlMarPm-Uw]

[youtube https://www.youtube.com/watch?v=Tf64mkIF1Qc]

Wird ein Muskel passiv gedehnt erreicht er im Bestfall seine anatomische Bewegungsgrenze – hier ist Schluss, man spürt die Dehnung enorm! Durch aktive Beweglichkeit hingegen wird die physiologische Bewegungsgrenze eingenommen (beim Erreichen verspürt man keinen Dehnungsschmerz, eher eine sehr stark angespannte, oft sogar krampfende Muskulatur). Diese ist, wie das Video erkennen lässt, deutlich geringer als die anatomische Bewegungsgrenze. Sehr oft wird das aktive Beweglichkeitstraining vernachlässigt, wodurch ein großer Bewegungsumfang gar nicht genutzt werden kann. Demnach: passive sowie aktive Beweglichkeit trainieren!

Nach der muskulären Belastungsform:

• statisch: definiert als Fähigkeit, einen möglichst großen Gelenkwinkel einzunehmen und lange zu halten.

• dynamisch: definiert als Fähigkeit, einen möglichst großen Gelenkwinkel kurzfristig durch federnde  Bewegungen einzunehmen.

[youtube https://www.youtube.com/watch?v=HGVpIthEq80]

[youtube https://www.youtube.com/watch?v=1JK5PWVglDU]

Durch dynamischen/ballistisches Dehnen können größere Gelenkamplituden erreicht werden (Beispiel: Versuche deine Zehenspitzen im Stand zu berühren. Nun wiederhole das Ganze mit kleinen wippenden Bewegungen und Du wirst eine größere Amplitude erreichen.). Dies geht allerdings mit einem gewissen Verletzungsrisiko einher, wenn zum Beispiel zu schnell oder zu aggressiv gedehnt wird. Im Abschnitt Dehnmethoden gibt es dazu mehr!

Nach dem Anteil der Gelenksysteme:

• lokal: die Beweglichkeit eines einzelnen Gelenks / eines Gelenksystems.

IMG_1027
(lokale Beweglichkeit im Handgelenk)

IMG_1018
(lokale Beweglichkeit im Sprunggelenk)

• global: die Beweglichkeit über mehrere Gelenke hinweg.

IMG_0919
(globale Beweglichkeit in der rückwärtigen Kette)

IMG_0958
(globale Beweglichkeit in der vorwärtigen Kette)

Die meisten Alltags- / Sportbewegungen fordern vielmehr eine globale Beweglichkeit. Demnach mein Tipp: Zusätzlich zu lokalen Dehnungen ebenfalls gesamte „Muskelschlingen“, wie es beispielsweise in Yoga-Systemen gemacht wird, dehnen. Dabei werde zusätzlich fasziale Strukturen erreicht, die verschiedene Muskeln verbinden und sich über lange Ketten erstrecken. Spüre den unterschied mit folgendem Test: Begib Dich in die Rumpfbeuge, lasse Deine Wirbelsäule noch recht aufrecht, und spüre die Dehnung. Versuche jetzt Deine Wirbelsäule einzurollen und Deine Stirn den Knien anzunähern. Obwohl die Muskeln der Beinrückseite nicht weiter “auseinander gezogen” worden sind verspürst Du höchstwahrscheinlich eine intensivierte Dehnung.

Kombinationen:

Selbstverständlich verlangen viele Situationen nicht nur eine Form der Beweglichkeit , sondern vielmehr Mischformen. Gängige Begriffe in der Trainingslehre sind aktiv-statisch, aktiv-dynamisch, passiv-statisch sowie passiv-dynamisch. Auf diese Kombinationen werde ich in Teil 3 dieser Serie eingehen.

Dieser erste, doch sehr umfassende Abschnitt, hat sich mit den Grundlagen der Beweglichkeit befasst. Auf diesem Wissen wird der nächste Teil aufbauen.
Ich will auf die Vorteile des Beweglichkeitstrainings eingehen, die Einflussfaktoren auf die Beweglichkeit erläutern sowie „Mythen“ rund um dieses Thema aufklären.

Seid gespannt!

Euer Nil

Quellen:
https://www.ph-ludwigsburg.de/fileadmin/subsites/2d-sprt-t-01/user_files/Lehrbeauftragte/ws0809/Turbanski_-_Einfuehrung_in_die_Trainingslehre_BEWEGLICHKEIT.pdf

http://www.dr-moosburger.at/pub/pub046.pdf
http://www.dr-moosburger.at/pub/pub046.pdf

 {:}{:en}

What is mobility – is mobility the same as mobility? Who should be mobile and why? And for many very important: How do I become mobile again? And why do I use the word “again”?

In the following article I would like to give an overview of this exciting topic, answer the above questions (and more) and give my opinion, based on my own experience, my work as a trainer and my studies in sports science, regarding mobility in training and everyday life.

I have tried to keep the article as simple as possible so that it can be understood by everyone, even if the subject matter is completely new. Nevertheless, one or two Latin words will appear, of course with the necessary explanation.

This is not an article based solely on practical experience, nor does it meet all scientific standards. However, it will give you a very comprehensive picture of the subject of flexibility and equip you with the necessary knowledge to help yourself to a flexible body. If in doubt, please consult a professionally trained trainer/therapist or similar.


For a better overview, I have divided the text into the following points.

1 What is mobility?
1.1 Basic concepts
1.2 Physiological mechanisms
1.3 Forms of mobility

2 Why train flexibility?
2.1 Advantages and effects of flexibility training
2.2 Factors influencing flexibility
2.3 Myths

3 How do I become mobile?
3.1 Methods
3.2 Timing of flexibility training

4. summary


1. What is Mobility?

Mobility affects us all. Mobility enables our joints to realise large movement dimensions. Many everyday and sports movements require a large range of motion. Imagine the following situation, for example: The light bulb of your ceiling lamp needs to be changed, so you take a ladder and start to unscrew the light bulb from its socket. Or: You drop something on the street, so you squat down and pick it up. Or: You get on a bus with a rather high entrance. Or, or, or. All these movements could become a problem with severely limited mobility in the associated joints. In sports situations, the role of mobility seems even more ubiquitous: a split in gymnastics, jumping over a hurdle in hurdling, or the low squat of a sumo wrestler. Flexibility accompanies us at every turn. Now look forward to the following lines that will hopefully bring some light into the darkness!

1.1 Basic Concepts

“Mobility is the ability to perform movements arbitrarily with the required amplitude” or “the ability to perform movements with the required or optimal amplitude, which is made possible by the joint systems” are only two of the many definitions around the topic of mobility. In order to understand these definitions, it is first necessary to clarify the basic terms. After all, mobility is made up of several components, including:

Articulation, as the range of oscillation of joints, influenced by bony structures,
extensibility, as the stretchability of muscles, tendons, skin and connective tissue. Mobility, another term that is very comprehensive and refers to the ability of a joint to move freely. Mobility is influenced by anatomical-structural components (for example, ossifications at joints), length and tension of the muscles surrounding the joint, quality of the tissue (e.g. connective tissue such as “fascia”) as well as the neuromuscular control of the joint (= how well the nervous system can control the joint).

Other terms such as flexibility can be seen as synonyms for mobility.

As you can see, there is a lot to explore, research and talk about around the topic of mobility!

In the next section, I will touch on the physiological mechanisms of the topic and show which components of flexibility can be trained.

1.2 Physiological Mechanisms

The basis is the anatomy of the tissue to be stretched: muscle, tendon, connective tissue, skin – although I will only touch on the subject as it would otherwise go beyond the scope of this article. Put simply, most skeletal muscles (those that can be controlled at will and are used to move the skeleton) each have a tendon at their ends. The tendon connects the muscles to a bone via a connective tissue, the periosteum, and can thus transmit forces.

tendon attach
(Quelle: http://photos1.blogger.com/img/147/2431/320/tendon%20attach.jpg)

The muscle (1) itself consists of many muscle fibre bundles (2), which in turn can be broken down into individual fibres (3). The individual fibre can be broken down again into even smaller muscle fibrils (4). If we break the whole thing down one more time, we arrive at the sarcomere. This sarcomere consists of many contractile units that are ultimately responsible for performing muscle contraction/relaxation.

6333259793
(Quelle: http://www.apotheken-umschau.de/multimedia/66/94/263/6333259793.jpg)

Schematically, this movement can be represented like a telescopic antenna: during contraction (tension) of the muscles, the filaments slide into each other – the muscle shortens and becomes thicker. During relaxation, the filaments slide apart – the muscle returns to its original length. The following video shows this quite clearly.

[youtube https://www.youtube.com/watch?v=QW3ZFtT202Y]

Science is still not 100% sure which structures of the sarcomere are ultimately involved in mobility (For further research: titin filaments, the only elastic elements within the muscle fibre). In contrast, a tendon consists mainly of collagen. This tissue has very good tensile strength, which is of course very important when you consider that enormous forces act on it, and therefore allows only very small amounts of stretching. The substance that holds all our structures in place is connective tissue. There are different types of connective tissue, which fulfil different functions in the body. Important for this topic is the fact that the connective tissue also coats the individual fibres of the muscles and can influence the state of tension (in this article I will not go into the various functions, such as plasticity of the connective tissue. This is an exciting and extensive topic for the near future). In the meantime, if you want, you can watch the following short documentary on the subject of fascia:

[youtube https://www.youtube.com/watch?v=ZY3W9FFUvAU]

1418562170
(Quelle: https://image.jimcdn.com/app/cms/image/transf/none/path/sf22547969010ed89/image/ida1669d6d0b86e9e/version/1418562170/faszien.jpg)

The skin as a component mostly contributes only minimally to mobility in the conventional sense and will not be discussed further in this article.

What happens when a muscle is being stretched?

To explore this question, we look at two other structures in muscle and tendon: the muscle spindles and the Golgi tendon organs. These organs are “tension detectors” and give our brain feedback about the length of our muscles and tendons respectively. At the beginning of a stretch, the contractile units of the sarcomeres give way – the telescope moves apart. If the tension in the muscle becomes too high, the muscle spindles switch on and give our nervous system the signal: “Before the muscle tears – tense the muscle!” This protective mechanism thus serves to prevent injury and is called “self-reflex”. If the stretching in the musculature nevertheless continues to increase (for example in the case of a fall – see illustration)

hammie

the Golgi tendon organs, which are located at the transition from muscle to tendon, switch on and cause exactly the opposite: a reflex relaxation of the same muscle. This mechanism serves to provide the muscle with a certain stretch reserve and is called the “tension reflex”. We will look at these mechanisms again later in the different stretching methods.

Which components of mobility can be trained?

From a structural point of view, about 50% of the mobility of a joint is determined by the joint structure and 50% by muscles (approx. 41%), tendons and ligaments, connective tissue and skin (% values are of course only a guideline and cannot be generalised!). Articulation (remember: bony structure of a joint) is thus a major factor that can influence the mobility of a joint. However, like any other tissue in the human body, a bone has the ability to adapt. The anatomy of a bone allows it to respond to stress and gradually adapt to that stress. However, this process requires a lot of patience and, above all, time. An example of changes in bony structures are femoral head adaptations in old age (femoral neck angle).

ccd_winkel
(Quelle: http://www.medizinfo.de/becken/images/ccd_winkel.jpg)

If you now blame your problems with mobility on your innate low flexibility, you are very likely on the wrong track! In most cases, very good mobility can be achieved, which is mainly due to changes in the musculature (especially muscle tension, which is built up by the nervous system). As a small child, most of us possessed optimal mobility – only very many “unlearn” this ability.

baby-squat
(Quelle: http://nicktumminello.com/wp-content/uploads/2012/11/baby-squat.jpg)

The basis for this is the principle “Use it, or Lose it”. As written above, every structure of our body is subject to constant adaptation. If you don’t use a structure, why try to maintain it? This is also true for flexibility: If you never bring a muscle to its final range of motion, it will adapt to the length that is actively used by you! Accordingly, flexibility training does not mean lengthening the muscle, but rather returning it (optimally) to its original state of tension. Here is an important hint: the assumption that muscles can “shorten” is not scientifically proven! To date, the structural length of a muscle cannot change (except pathologically). As we have established above, this is determined by the length and number of sarcomeres. Rather, there is a lower tolerance to stretching tension (“stretching pain”).
The only change in length in the muscle occurs during contraction and relaxation (to repeat: sliding into each other of the contractile units in the sarcomere), but it is reversible (can be reversed).

In the next section, I will discuss different forms of flexibility and show that not all flexibility is the same.

1.3 Forms of mobility

In training theory, the following forms of mobility are distinguished:

According to the muscular mode of action:

– Passive: defined as the ability to move a joint as far as possible by the action of external forces (gravity, partner, own body weight).
body weight) to assume as large a joint angle as possible.

– Active: defined as the ability to assume a stretching position through muscular tension. In
In plain language: strength training. The muscle that works here is on the opposite side of the muscle to be stretched.
opposite side of the muscle to be stretched.

[youtube https://www.youtube.com/watch?v=bOlMarPm-Uw]

[youtube https://www.youtube.com/watch?v=Tf64mkIF1Qc]

If a muscle is passively stretched, it reaches its anatomical movement limit in the best case – this is the end, you feel the stretch enormously! Through active mobility, on the other hand, the physiological movement limit is taken (when it is reached, you do not feel any stretching pain, but rather very tense, often even cramping muscles). As the video shows, this is much lower than the anatomical range of motion. Very often, active mobility training is neglected, which means that a large range of movement cannot be used at all. Therefore: train passive as well as active mobility!

According to the muscular load form:

static: defined as the ability to assume the largest possible joint angle and maintain it for a long time.

– Dynamic: defined as the ability to assume the largest possible joint angle in the short term through springy movements.

[youtube https://www.youtube.com/watch?v=HGVpIthEq80]

[youtube https://www.youtube.com/watch?v=1JK5PWVglDU]

Through dynamic/ballistic stretching, greater joint amplitudes can be achieved (example: try to touch the tips of your toes while standing. Now repeat the whole thing with small bobbing movements and you will achieve a greater amplitude). However, this comes with a certain risk of injury if, for example, you stretch too fast or too aggressively. There is more on this in the stretching methods section!

According to the proportion of the joint systems:

local: the mobility of a single joint / joint system.

IMG_1027
(local mobility in the wrist)

IMG_1018
(local mobility in the ankle)

– global: the mobility across several joints.

IMG_0919
(globale Beweglichkeit in der rückwärtigen Kette)

IMG_0958

(global mobility in the forward chain).

Most everyday / sports movements require global flexibility. Therefore, my tip: In addition to local stretches, also stretch entire “muscle loops”, as is done in yoga systems, for example. This also reaches fascial structures that connect different muscles and extend over long chains. Feel the difference with the following test: Get into the torso bend, leave your spine still quite upright, and feel the stretch. Now try to curl your spine and bring your forehead closer to your knees. Although the muscles of the back of the leg have not been “pulled apart” any further, you will most likely feel an intensified stretch.

Combinations:

Of course, many situations require not only one form of flexibility, but rather mixed forms. Common terms in training theory are active-static, active-dynamic, passive-static and passive-dynamic. I will discuss these combinations in part 3 of this series.

This first, yet very comprehensive section, has dealt with the basics of flexibility. The next part will build on this knowledge.
I will go into the benefits of flexibility training, explain the factors that influence flexibility as well as clear up “myths” surrounding this topic.

Be curious!

Your Nil

 

References:
https://www.ph-ludwigsburg.de/fileadmin/subsites/2d-sprt-t-01/user_files/Lehrbeauftragte/ws0809/Turbanski_-_Einfuehrung_in_die_Trainingslehre_BEWEGLICHKEIT.pdf

http://www.dr-moosburger.at/pub/pub046.pdf
http://www.dr-moosburger.at/pub/pub046.pdf

{:}

{:de}Beweglichkeit: Eine Grundlage für Bewegung Teil 2{:}{:en}Mobility: Basis for Movement Part 2{:}

{:de}

Dieser zweite Teil der Serie Beweglichkeit – Eine Grundlage für Bewegung (zu Teil 1) geht auf die Frage „warum?“ ein. Warum überhaupt Beweglichkeit trainieren? Was bringt es für Vorteile an dieser Fähigkeit zu arbeiten? Welche Effekte kannst Du denn überhaupt erwarten – kurzfristig als auch langfristig. Was sind Einflussfaktoren auf Beweglichkeit?

Abschließend werde ich Mythen rund um das Thema aufklären, unter anderem „Dehnen als Muskelkaterprophylaxe“.


1. Was ist Beweglichkeit?
1.1 Grundbegriffe
1.2 Physiologische Mechanismen
1.3 Formen der Beweglichkeit

2. Warum Beweglichkeit trainieren?
2.1 Effekte und Vorteile des Beweglichkeitstrainings
2.2 Einflussfaktoren auf die Beweglichkeit
2.3 Mythen

3. Wie werde ich beweglich?
3.1 Methoden
3.2 Zeitpunkt für das Beweglichkeitstraining

4. Zusammenfassung


2. Warum Beweglichkeit trainieren?

2.1 Effekte und Vorteile des Beweglichkeitstrainings

Um der Frage nach dem „warum?“ nachzugehen, ist es sinnvoll sich zu Beginn vor Augen zu führen was Beweglichkeitstraining für Effekte, beziehungsweise Veränderungen und Vorteile mit sich bringen kann.

Effekte habe ich in diesem Artikel in folgende Unterpunkte gegliedert:

Neuromuskuläre Veränderungen, muskuläre Veränderungen, sowie strukturelle Veränderungen.

Neuromuskuläre Veränderungen:
Wie ich schon im ersten Teil der Serie erwähnt habe, bestimmt die Fähigkeit des Nervensystems eine Dehnungsspannung zu tolerieren maßgeblich die Beweglichkeit. Wird diese nun regelmäßig trainiert „gewöhnen“ sich Rezeptoren an den Muskeln, Sehnen und dem Bindegewebe an die erhöhte Dehnungsspannung. Dies hat zur Folge, dass das Schmerzempfinden nach und nach reduziert wird.

Muskuläre Veränderungen:
Für diesen Punkt rufen wir uns noch einmal die „aktive Beweglichkeit“ in Erinnerung: die Dehnposition wird aktiv eingenommen, das heißt mit Muskelkraft. Hier sind zwei Begriffe von großem Nutzen: Agonist (den Muskel den ich dehnen will) und Antagonist (der Muskel „auf der anderen Körperseite“ der sich anspannt und mich in die Dehnposition bringt). Da aktives Beweglichkeitstraining Krafttraining für den Antagonisten ist, wird dieser gestärkt. Demnach verbessert sich die aktive Beweglichkeit.

Strukturelle Veränderungen:
Das Bindegewebe habe ich im ersten Teil schon erwähnt, möchte hier aber noch einmal darauf zurückkommen. Unter normalen Umständen hat das Bindegewebe eine sauber angeordnete, gitterartige Struktur welche sehr elastische Eigenschaften mit sich bringt. Durch mangelnde Bewegung, nur eine von vielen Ursachen, kann sich diese Struktur verändern und salopp gesagt „verfilzen“. Diese Verfilzung geht mit einer verringerten Elastizität und einer damit verbundenen schlechteren Beweglichkeit einher. Durch Dehn- und Massagemethoden kann man dem entgegenwirken. Auf Massage- und Entspannungsmethoden komme ich in Teil 3 zu sprechen.

fasz 1

Die Vorteile von Beweglichkeitstraining (nur eine kleine Auswahl) sind:
• Durch neu erlangte Beweglichkeit können viele neue Positionen eingenommen und Bewegungen realisiert werden
• Bewegungsreserven schaffen (die Differenz zwischen erforderlicher und maximaler Bewegungsamplitude) wodurch Verletzungen minimiert werden können

akt vs pass

• Durch verbesserte Beweglichkeit können Kompensationmuster vermieden werden, die auf einen Mangel an Beweglichkeit in einem oder mehreren Gelenken beruhen

Image-1+(1)
Durch mangelnde Schulterbeweglichkeit kompensiert die Lendenwirbelsäule mit einer Hyperextension (Hohlkreuz)

• Positive Auswirkungen auf Kraft (Beweglichkeit und Kraft schließen sich nicht gegenseitig aus: eine vergrößerte Beweglichkeit kann sogar den Ausnutzungsgrad der muskulären Kraftleistungsfähigkeit erhöhen, Thema verlängerte Beschleunigungswege!), Schnelligkeit (Maximale Schnelligkeit kann nur erzielt werden, wenn keine Gelenkwinkel-Endstellung erreicht ist. Demnach ist hinsichtlich maximaler Schnelligkeit eine gewisse Beweglichkeitsreserve von großen Nutzen.), Ausdauer (durch Beweglichkeit verbesserte Technikökonomie) und Koordination/Technik (wesentliche Voraussetzung für sportliche Techniken: Gewichtheben, Turnen, etc.)

• Durch regelmäßiges Dehnen kraft- oder schnelligkeitsbeanspruchter Muskeln kann langfristig eine Muskelverkürzung verhindert werden

2.2 Einflussfaktoren auf die Beweglichkeit

Nicht jeder Mensch ist gleich beweglich. Wie alles im Körper adaptiert sich auch die Beweglichkeitsfähigkeit an innere (endogene) sowie äußere (exogene) Faktoren. Um sich selbst besser einschätzen und ein geeignetes Beweglichkeitstraining auswählen zu können, ist es wichtig sich über diese Faktoren zu informieren. Dies kann eine Menge Zeit, Kopfzerbrechen und Mühe sparen und zu besseren/schnelleren Erfolgen führen.

Endogene Faktoren:

Als endogen werden jene Faktoren bezeichnet die aus dem Inneren eines Systems (hier das System Mensch) heraus nach außen wirken.

Alter:
Mit zunehmenden Alter wird eine geringere Beweglichkeit beobachtet, woran liegt das? Generell unterliegen sämtliche Strukturen im menschlichen Körper Abnutzungserscheinungen. So nimmt beispielsweise die Qualität und Struktur des Bindegewebes ab wenn es nicht gepflegt wird. Knorpelgewebe (Knorpel ist die Substanz die einen Knochen im Gelenkbereich überzieht und den Gelenkflächen eine saubere, reibungslose Bewegung ermöglicht, sowie Schutz für das Knochengewebe bietet. Auf Aufbau und weitere Funktionen des Knorpels wird in diesem Artikel nicht weiter eingegangen.) wird bei mangelnder Bewegung und Belastung der Gelenke nicht richtig mit Nährstoffen versorgt und ist anfälliger für Verschleiß. Ebenfalls nimmt die Muskelmasse im Alter ab, was unter anderem auf eine verminderte Ausschüttung des Hormons Testosteron zurückzuführen ist. Zusätzlich verringert sich der Wasseranteil im Gewebe, was einen negativen Effekt auf die Elastizität hat. Doch wenn man sich ältere Menschen anschaut, die einen Großteil ihres Lebens Sport getrieben haben, insbesondere Disziplinen wie Turnen, Tanz oder andere gymnastische Formen, lässt sich eine signifikant erhöhte Beweglichkeit im Vergleich zu Menschen, die sich ihr Leben lang kaum sportlich bewegt haben, feststellen. Wie im ersten Teil dieser Serie beschrieben wurde passt sich unserer Körper an Reize, wie Training oder alltägliche Bewegungsmuster an und kann sich dadurch langfristig verändern. Hier gilt wieder das Prinzip “Use it or Lose it”: bringst du deinen Gelenken, Muskeln, Bindegewebe und Nervensystem regelmäßig bei große Bewegungsausmaße realisieren und zulassen zu können wird sich deine Beweglichkeit langfristig und selbst im hohen Alter auf ein gesundes Maß einstellen (eine Verschlechterung kann nicht aufgehalten, jedoch deutlich verlangsamt werden!). Je früher Du damit anfängst desto besser!

[youtube https://www.youtube.com/watch?v=7NZ6C6wGpAE]
Johanna Quaas: selbst im hohen Alter noch sehr sportlich unterwegs

Geschlecht:
Das Geschlecht spielt ebenfalls eine Rolle, wobei Frauen unter anderem durch hormonelle Unterschiede (erhöhter Östrogenspiegel) und einer damit einhergehenden geringere Gewebsdichte (vermehrte Einlagerung von Wasser und Fettgewebe) meistens bessere Voraussetzungen haben. Zusätzlich ist meist die Muskelmasse und die Muskelspannung bei Frauen im Vergleich zu Männern geringer. Das soll auf keinen Fall bedeuten, dass es Männern nicht möglich ist eine gute bis sehr gute Beweglichkeit zu erarbeiten – es muss unter Umständen einfach ein wenig mehr Zeit und Aufwand eingesetzt werden.

Aus oben genannten Gründen ist es hier angebracht auf das Thema Hypermobilität, also ein zu viel an Bewegungsspielraum in einem Gelenk, einzugehen.

eds-4

Frauen sind öfter von diesem Zustand betroffen. Manche Sportarten wie beispielsweise Turnen (siehe Spagat..) vordern sogar eine gewisse Hypermobilität. Doch was ist ein zu viel an Beweglichkeit? Zum einen ist die Mobilität durch knöcherne Strukturen determiniert. Wenn der Knochenbau genetisch bedingt eine Gelenksbewegung über das gesunde Ausmaß zulässt spricht man von einer erhöhten Gelenkigkeit, welche mit erhöhten Belastungen im Gelenk einhergehen kann. Das Gegenteil ist die Hypomobilität, welche zum Beispiel durch Gelenksblockaden entstehen kann. Zum anderen setzt sich die Mobilität aus im ersten Teil dieser Serie besprochenen Strukturen und Fähigkeiten zusammen (Muskel, Sehnen, Gelenkkapseln, Bänder und Toleranz gegen Dehnungsspannung). Prinzipiell ist es so: selbst ein Spagat (auch durch Hypermobilität induziert) kann eine gesunde Gelenkstellung darstellen, WENN in der Endstellung das Gelenk trotzdem durch die Muskulatur stabilisiert werden kann. Diesen Punkt will ich noch einmal betonen: Es reicht nicht allein aus, einen Muskel oder eine Position passiv bis zum geht nicht mehr zu dehnen, es sollte unbedingt zusätzlich darauf geachtet werden diesen neuen Bewegungsradius auch zu nutzen! Das bedeutet aktive Beweglichkeit schulen, damit die neue Gelenkstellung in einem Bewegungsmuster integriert werden kann und somit der Kontrolle des Nervensystems unterliegt.

Side_Kick
Kampsport fordert oftmals eine sehr gute passive, sowie aktiv-dynamische Beweglichkeit

Körpertemperatur:
Erwärmte Muskeln sind besser durchblutet und haben eine erhöhte Stoffwechselleistung. Zudem steigert sich die Anspannungs- und Dehnfähigkeit der Muskulatur. Ich bin folgender Meinung: wenn ein intensives Beweglichkeitstraining bevorsteht macht es definitiv Sinn sich davor aufzuwärmen. Dennoch herrschen im echten Leben/Alltag keine perfekten Vorraussetzungen. Wir denken nicht daran uns vor einer Bewegung aufzuwärmen, die ein relativ großes Maß an Beweglichkeit fordert. Zusätzlich geraten wir ab und zu in Situationen (zum Beispiel Stürze) auf die wir uns nicht vorbereiten können. Aus diesem Grund versuche ich über den Tag verteilt möglichst viele Positionen einzunehmen, die einen erhöhten Grad an Beweglichkeit fordern. Somit erlaube ich meinen Körper sich an eine höhere Toleranz von Dehnungsspannung zu gewöhnen.

Anthropometrie:
Die Anthropometrie beschäftigt sich unter anderem mit den einzelnen Längen von Körperteilen/Segmenten. Dies ist zwar, wenn überhaupt nur minimal durch Training konditionierbar, stellt aber einen oftmals vernachlässigten Faktor in Bezug auf Körperpositionen dar. So haben es Menschen mit langen Armen und kurzen Beinen einfacher eine Rumpfbeuge durchzuführen und dabei mit den Fingern die Zehenspitzen zu berühren. Ein weiteres Beispiel wäre, dass Menschen mit kürzen Oberschenkelknochen und vergleichsweise längeren Oberkörpern eine aufrechtere Kniebeuge einnehmen können. So müssen hier auf individuelle Unterschiede bei Übungsausführungen oder Techniken geachtet werden.

short-torso-vs-long-torso
Verschiedene Körpersegmentlängen und deren Auswirkung in der Kniebeuge

Spannungszustände:
Dieser Faktor berücksichtigt unter anderem Stress, unwohlfühlen oder sonstige Einflüsse auf einen entspannten Zustand. Bei Stress ist das Nervensystem sympathisch aktiv (ein “Fight or Flight”-Zustand, das Gegenteil ist parasympathische Aktivierung – ein Ruhezustand) und lässt keine hohen Bewegungsumfänge zu. Demnach ist es zweckmäßig Beweglichkeitstraining im entspannten Zustand durchzuführen.

Exogene Faktoren:

Exogene Faktoren sind Stimuli aus der Umwelt, tragen jedoch ebenfalls Maßgeblich zur Beweglichkeit bei.

Ermüdung durch Belastungsreize:
Nach intensiver Belastung kann eine verminderte Beweglichkeit festgestellt werden. Hierbei ist es von Vorteil sich die Energiebereitstellung in der Muskulatur
anzuschauen. Um den Rahmen des Artikels nicht zu sprengen, gehe ich nur Schemenhaft darauf ein: Energie wird im Körper mittels ATP (Adenosintriphosphat), ein universeller, für alle Zellen zugänglicher Energieträger, gespeichert und steht bei hoher Konzentration im Gewebe unmittelbar zur Verfügung. Kurz gefasst sind die ATP Speicher im Muskel nach erhöhter Belastung ziemlich aufgebraucht. Nun ist es aber so, dass ein Muskel zur Relaxation (zur Erinnerung: Kontraktion = Anspannung, Verkürzung; Relaxation = Entspannung, Einnahme der Ursprungslänge) ATP benötigt. Wenn also die ATP Speicher leer sind herrscht ein erhöhter Muskeltonus. Mehr zum Thema “Dehnen nach Belastung” am Ende dieses, und im nächsten Teil.

Wie schon bei den endogenen Faktoren beschrieben, spielt auch die Umgebungstemperatur eine wichtige Rolle. Wie Du dir vielleicht denken kannst, begünstigt eine warme Umgebungstemperatur eine erwärmte Muskulatur- und andersrum. Demnach: in kalten Regionen, Jahreszeiten oder Räumen empfiehlt es sich, besonderen Fokus auf die Erwärmung zu legen (dies gilt eigentlich bei allen Trainingsformen), weil Kältereize zu einer Zunahme des Muskeltonus führen können.

Tageszeit:
Dieser Punkt ist sehr individuell. Allgemein ist die Beweglichkeit nach dem Aufstehen am geringsten (der Körper lag die vorherigen Stunden in den mehr oder weniger gleichen Positionen). Abends lassen sich oftmals die größten Bewegungsausmaße realisieren, da der Körper sich den ganzen Tag schon bewegen konnte und sich an die Gelenkstellungen gewöhnt hat.

2.3 Mythen

Bis heute existieren viele Mythen rund um das Thema Beweglichkeit sowohl in der Gesellschaft als auch bei Trainern. Da die Wissenschaft schon etwas weiter ist, löse ich hier drei große Mythen auf.

Dehnen als Muskelkaterprophylaxe:
Sehr oft hört man nach einem harten Training: „Ich dehne mich jetzt noch, dann wird der Muskelkater besser – oder entsteht gar nicht erst!“. Um diese fragwürdige Aussage bewerten zu können schauen wir uns zuerst einmal die Mechanismen hinter dem Phänomen Muskelkater an. Wie bei so vielem, ist sich die Wissenschaft auch bei diesem Thema noch nicht zu 100% sicher, was genau eigentlich los ist. Der Stand von heute ist folgender: Wie ich im ersten Teil der Serie schon erwähnt habe, besteht die einzelne Muskelfibrille aus Sarkomeren, einer kontraktilen Einheit. Wenn man sich diese Sarkomere ansieht, stellt man fest, dass diese aus mehreren Strukturen bestehen, unter anderem Aktin und Myosin, welche letztendlich für die Kontraktion zuständig sind. Die Sarkomere werden von sogenannten Z-Scheiben oder Z-Streifen voneinander getrennt. Bei einem Muskelkater wurden genau an diesen Z-Streifen Verletzungen, genauer gesagt Risse, festgestellt.

muka2a

In diese Risse dringt nach ca. 24-36 Stunden (Muskelkater tritt meist erst am zweiten Tag eines harten Training auf) Wasser ein (Ödembildung) welches die Muskelfaser anschwellen lässt und somit dehnt. Diese Dehnung ist oftmals der Ursprung für die Schmerzen beim Muskelkater. Die Risse in den Z-Streifen werden unter anderem durch neue, ungewohnte Belastungen oder extrem starke Trainingsreize induziert. Vor allem geschieht dies jedoch nicht in der konzentrischen (konzentrisch = überwindend; Beispiel: Aufstehen aus einer Kniebeuge oder nach oben ziehen beim Klimmzug) sondern bei der exzentrischen Muskelarbeit (exzentrisch = nachgebend; Beispiel: heruntergehen beim Liegestütz oder bergabgehen). Um auf die eigentliche Frage zurückzukommen: Dehnen um Muskelkater zu verhindern? Wenn durch ein hartes Training Mikroverletzungen im Muskel entstanden sind lassen sich diese sicher nicht mit Dehnübungen reversieren – im Gegenteil, durch hartes dehnen können sich die Verletzungen sogar verschlimmern (selbst ein extremes Beweglichkeitstraining kann Muskelkater provozieren)! Dies gilt ebenfalls für feste Massagen (auch Selbstmassagen mit Blackroll, etc.).
Über die Frage wann Beweglichkeitstraining sinnvoll ist, werde ich im dritten Teil ausführlich berichten.

Bis dahin bleibt zu sagen: Nach einer harten Trainingseinheit bietet es sich an Cooldown-Maßnahmen durchzuführen, wie „auslaufen“ oder Entspannungs- / Lockerungsübungen, um die Körpertemperatur auf ein normales Niveau zu bringen, Stoffwechsel(-abfall)produkte aus dem Muskel zu „spülen“ und den Muskeltonus langsam zu senken.

Dehnen allein reicht um Fehlhaltungen auszugleichen:
Zum Thema „Körperhaltung“ schreibe ich einen eigenen Artikel und werde daher hier nur sehr kurz darauf eingehen. Fehlhaltungen können viele Ursachen haben, oftmals lassen sich aber auf der einen Seite „Muskelverkürzungen“ (eher erhöhte Spannungen) auf der anderen Seite abgeschwächte Muskeln (oft ohne Ansteuerungsfähigkeit) feststellen. Demnach reicht es nicht aus, nur Muskeln mit erhöhter Spannung zu dehnen – es müssen vor allem die Muskeln gekräftigt werden, die abgeschwächt sind. So kann langfristig ein Gleichgewicht zwischen den Muskeln hergestellt werden (hier wird außer Acht gelassen, woher diese Fehlhaltungen stammen und ob es wirklich immer nötig ist, verspannte Muskeln zu dehnen).

image-31106-128766

Statischen Dehnen als Aufwärmmethode – Was it dran?
Hierbei muss man unterscheiden für welche Art von Belastung aufgewärmt wird: Vor Bewegungen oder Sportarten, die eine gewisse Beweglichkeit voraussetzen (Turnen, Kampfsport, Hürdenlauf, etc.), macht es sicherlich Sinn, vor der Belastung Dehnmethoden anzuwenden, um sich auf folgende Positionen vorzubereiten. Vor Sportarten jedoch, die erhöhte Krafteinsätze oder schnellkräftige Leistungen fordern, kann ausgiebiges dehnen sogar Verletzungen provozieren oder Leistungeinbußen mit sich bringen. Grund hierfür ist ein herabgesetzter Muskeltonus und eine verminderte Ansteurungsfähigkeit („Lähmung“ von Nervenzellen und Rezeptoren) des Muskels. Wenn trotzdem vor solch einer Sportart/Wettkampf statisch gedehnt wird, ist es sinnvoll submaximale Belastungen vor der eigentlichen Aufgabe durchzuführen, um den Muskeltonus erneut zu erhöhen und die Ansteuerung zu verbessern.
Wann ein guter Zeitpunkt für Beweglichkeitstraining ist und wie man sich am besten vor dem Sport aufwärmt und „andehnt“ erfahrt Ihr im dritten Teil unter dem Punkt „Zeitpunkt für das Beweglichkeitstraining“.

Ich hoffe, dass Euch dieser zweite Teil gefallen hat und Ihr neues Wissen um das Thema Beweglichkeit gewinnen konntet. Im letzten Artikel dieser Serie werde ich auf die heiß begehrte Frage eingehen „Wie werde ich beweglich?“ und zu guter Letzt eine Zusammenfassung über dieses komplexe Thema geben.

Bis dahin,

Euer Nil

 {:}{:en}

This second part of the series Mobility – A Foundation for Movement (to Part 1) addresses the question “why?”. Why train flexibility at all? What are the benefits of working on this skill? What effects can you expect – in the short term as well as in the long term? What are the factors that influence flexibility?

Finally, I will clear up myths around the topic, including “stretching as muscle soreness prophylaxis”.


1 What is mobility?
1.1 Basic concepts
1.2 Physiological mechanisms
1.3 Forms of mobility

2 Why train flexibility?
2.1 Effects and benefits of flexibility training
2.2 Factors influencing flexibility
2.3 Myths

3 How do I become mobile?
3.1 Methods
3.2 Timing of flexibility training

4. summary


2 Why train flexibility?

2.1 Effects and advantages of flexibility training

In order to answer the question “why?”, it makes sense to start by considering the effects, changes and benefits that flexibility training can bring.

In this article I have divided the effects into the following sub-headings:

Neuromuscular changes, muscular changes and structural changes.

Neuromuscular changes:
As I mentioned in the first part of the series, the ability of the nervous system to tolerate stretching tension significantly determines mobility. If this is now trained regularly, receptors in the muscles, tendons and connective tissue “get used to” the increased stretching tension. As a result, the sensation of pain is gradually reduced.

Muscular changes:
For this point, let’s recall “active mobility” again: the stretching position is taken actively, that is, with muscular strength. Here two terms are of great use: Agonist (the muscle I want to stretch) and Antagonist (the muscle “on the other side of the body” that tenses and brings me into the stretch position). Since active flexibility training is strength training for the antagonist, the antagonist is strengthened. Accordingly, active flexibility improves.

Structural changes:
I have already mentioned the connective tissue in the first part, but I would like to come back to it here. Under normal circumstances, the connective tissue has a neatly arranged, lattice-like structure which has very elastic properties. Due to lack of movement, which is only one of many causes, this structure can change and become “matted”. This felting is accompanied by reduced elasticity and the associated poorer mobility. Stretching and massage methods can counteract this. I will talk about massage and relaxation methods in part 3.

fasz 1

The advantages of flexibility training (only a small selection) are:
– Newly acquired mobility allows many new positions to be adopted and movements to be realised
– Create movement reserves (the difference between required and maximum movement amplitude) which can minimise injuries.

akt vs pass

– Improved mobility can avoid compensation patterns due to a lack of mobility in one or more joints

Image-1+(1)

Due to lack of shoulder mobility, the lumbar spine compensates with hyperextension (hollow back).

– Positive effects on strength (mobility and strength are not mutually exclusive: increased mobility can even increase the degree of utilisation of muscular strength capacity, subject of extended acceleration distances!), speed (maximum speed can only be achieved if no joint angle end position is reached. Accordingly, a certain reserve of flexibility is of great benefit with regard to maximum speed), endurance (improved technique economy through flexibility) and coordination/technique (essential prerequisite for sporting techniques: Weightlifting, gymnastics, etc.).

– Regular stretching of muscles that are used for strength or speed can prevent muscle shortening in the long term.

2.2 Factors influencing mobility

Not everyone is equally mobile. Like everything else in the body, the ability to move adapts to internal (endogenous) and external (exogenous) factors. In order to better assess oneself and choose a suitable flexibility training programme, it is important to inform oneself about these factors. This can save a lot of time, headaches and effort and lead to better/faster results.

Endogenous factors:

Endogenous refers to those factors that act from within a system (in this case, the human system) to the outside.

Age:
With increasing age, a reduced mobility is observed, what is the reason for this? In general, all structures in the human body are subject to wear and tear. For example, the quality and structure of connective tissue decreases if it is not maintained. Cartilage tissue (cartilage is the substance that covers a bone in the joint area and allows the joint surfaces to move cleanly and smoothly, as well as providing protection for the bone tissue. The structure and other functions of cartilage will not be discussed further in this article) is not properly supplied with nutrients and is more susceptible to wear and tear if the joints are not moved and loaded properly. Muscle mass also decreases with age, which is partly due to a reduced release of the hormone testosterone. In addition, the amount of water in the tissue decreases, which has a negative effect on elasticity. But if you look at older people who have done sports for a large part of their lives, especially disciplines such as gymnastics, dance or other forms of gymnastics, you can see a significantly increased flexibility compared to people who have hardly done any sports all their lives. As described in the first part of this series, our bodies adapt to stimuli such as training or everyday movement patterns and can thus change in the long term. The principle of “Use it or Lose it” applies here again: if you regularly teach your joints, muscles, connective tissue and nervous system to be able to realise and allow large amounts of movement, your mobility will adjust to a healthy level in the long term and even in old age (deterioration cannot be stopped, but it can be significantly slowed down!). The earlier you start the better!

[youtube https://www.youtube.com/watch?v=7NZ6C6wGpAE]
Johanna Quaas: still very sporty even at an advanced age

Gender:
Gender also plays a role, whereby women usually have better conditions due to hormonal differences (increased oestrogen level) and the associated lower tissue density (increased storage of water and fatty tissue). In addition, muscle mass and muscle tone are usually lower in women compared to men. This is not to say that it is not possible for men to achieve good to very good flexibility – it may just take a little more time and effort.

For the reasons mentioned above, it is appropriate here to address the issue of hypermobility, i.e. too much range of motion in a joint.

eds-4

Women are more often affected by this condition. Some sports, such as gymnastics (see splits…) even prevent a certain hypermobility. But what is too much mobility? For one thing, mobility is determined by bony structures. If the bone structure genetically allows a joint movement beyond the healthy extent, we speak of increased mobility, which can go hand in hand with increased stress in the joint. The opposite is hypomobility, which can result from joint blockages, for example. On the other hand, mobility is made up of structures and abilities discussed in the first part of this series (muscle, tendons, joint capsules, ligaments and tolerance to stretching stress). In principle, even a split (also induced by hypermobility) can be a healthy joint position IF the joint can still be stabilised by the muscles in the final position. I want to emphasise this point again: It is not enough to passively stretch a muscle or a position to the point of no longer being able to do so, it is imperative to additionally make sure to use this new range of motion! This means training active mobility so that the new joint position can be integrated into a movement pattern and thus be subject to the control of the nervous system.

Side_Kick

Martial arts often require very good passive, as well as active-dynamic mobility

Body temperature:
Warmed muscles have better blood circulation and increased metabolic performance. In addition, the muscles’ ability to tense and stretch increases. I am of the opinion that it definitely makes sense to warm up before an intensive flexibility training session. However, in real life, the conditions are not perfect. We don’t think about warming up before a movement that requires a relatively high degree of flexibility. In addition, from time to time we get into situations (for example, falls) for which we cannot prepare. For this reason, I try to take up as many positions as possible throughout the day that require an increased degree of mobility. This way I allow my body to get used to a higher tolerance of stretching tension.

Anthropometry:
Anthropometry is concerned with, among other things, the individual lengths of body parts/segments. Although this can only be minimally conditioned through training, if at all, it is an often neglected factor in relation to body positions. For example, people with long arms and short legs find it easier to perform a trunk bend while touching the tips of their toes with their fingers. Another example would be that people with shorter femurs and comparatively longer torsos can perform a more upright squat. Thus, individual differences in exercise execution or techniques must be taken into account here.

 

short-torso-vs-long-torso

Different body segment lengths and their effect in the squat.

Tension states:
This factor takes into account, among other things, stress, discomfort or other influences on a relaxed state. During stress the nervous system is sympathetically active (a “fight or flight” state, the opposite is parasympathetic activation – a resting state) and does not allow for high volumes of movement. Accordingly, it is appropriate to perform flexibility training in a relaxed state.

Exogenous factors:

Exogenous factors are stimuli from the environment, but also contribute significantly to mobility.

Fatigue due to load stimuli:
Reduced mobility can be observed after intense exertion. Here it is advantageous to look at the energy supply in the muscles.
muscles. In order not to go beyond the scope of this article, I will only go into this in schematic form: energy is stored in the body by means of ATP (adenosine triphosphate), a universal energy carrier accessible to all cells, and is immediately available in high concentrations in the tissue. In short, the ATP stores in the muscle are pretty much used up after increased exertion. However, a muscle needs ATP to relax (remember: contraction = tension, shortening; relaxation = relaxation, return to the original length). So when the ATP stores are empty, muscle tone is increased. More on the topic of “stretching after exertion” at the end of this part and in the next.

As already described in the endogenous factors, the ambient temperature also plays an important role. As you might imagine, a warm ambient temperature favours a warmed-up musculature – and vice versa. Accordingly: in cold regions, seasons or rooms, it is advisable to place particular emphasis on warming up (this actually applies to all forms of training), because cold stimuli can lead to an increase in muscle tone.

Time of day:
This point is very individual. In general, mobility is lowest after getting up (the body has been in more or less the same positions for the previous hours). The greatest range of motion can often be achieved in the evening, as the body has already been able to move all day and has become accustomed to the joint positions.

2.3 Myths

To this day, there are many myths surrounding the topic of flexibility, both in society and among trainers. Since science is already a bit further along, I will dispel three major myths here.

Stretching as muscle soreness prophylaxis:
Very often you hear after a hard workout: “I’ll stretch now, then the muscle soreness will get better – or won’t develop at all!”. In order to be able to evaluate this questionable statement, let’s first take a look at the mechanisms behind the phenomenon of muscle soreness. As with so many things, science is not yet 100% sure what exactly is going on. The current state of affairs is as follows: as I mentioned in the first part of this series, the individual muscle fibril consists of sarcomeres, a contractile unit. If you look at these sarcomeres, you find that they are made up of several structures, including actin and myosin, which are ultimately responsible for contraction. The sarcomeres are separated from each other by so-called Z-disks or Z-strips. In the case of muscle soreness, injuries, or more precisely tears, were found precisely on these Z-strips.

 

muka2a

After about 24-36 hours (muscle soreness usually occurs on the second day of a hard workout), water (oedema) penetrates these tears, causing the muscle fibre to swell and stretch. This stretching is often the source of the pain in sore muscles. The tears in the Z-strips are induced, among other things, by new, unaccustomed stresses or extremely strong training stimuli. Above all, however, this does not happen in concentric muscle work (concentric = overcoming; example: getting up from a squat or pulling up when doing a pull-up) but in eccentric muscle work (eccentric = yielding; example: going down when doing a push-up or going downhill). To get back to the actual question: Stretching to prevent muscle soreness? If a hard workout has caused micro-injuries in the muscle, these certainly cannot be reversed with stretching exercises – on the contrary, hard stretching can even make the injuries worse (even extreme flexibility training can provoke muscle soreness)! This also applies to firm massages (also self-massages with Blackroll, etc.).
I will report in detail on the question of when flexibility training makes sense in the third part.

Until then, it remains to be said: After a hard training session, it is advisable to carry out cool-down measures, such as “running out” or relaxation / loosening exercises, in order to bring the body temperature to a normal level, to “flush” metabolic (waste) products out of the muscle and to slowly lower the muscle tone.

Stretching alone is enough to compensate for bad posture:
I am writing a separate article on the subject of “posture” and will therefore only deal with it very briefly here. Poor posture can have many causes, but often there are “muscle shortenings” (rather increased tension) on the one hand and weakened muscles (often without the ability to control them) on the other. It is therefore not enough to stretch only muscles with increased tension – the muscles that are weakened must be strengthened. In this way, a balance between the muscles can be established in the long term (here, it is disregarded where these malpositions come from and whether it is really always necessary to stretch tense muscles).

image-31106-128766

Static stretching as a warm-up method – What’s the point?
You have to differentiate between the type of exercise for which you are warming up: Before movements or sports that require a certain degree of flexibility (gymnastics, martial arts, hurdling, etc.), it certainly makes sense to use stretching methods before the load in order to prepare for the following positions. However, before sports that require increased strength or fast-acting performance, extensive stretching can even provoke injuries or reduce performance. The reason for this is reduced muscle tone and a reduced ability to stimulate (“paralysis” of nerve cells and receptors) the muscle. If static stretching is nevertheless performed before such a sport/competition, it makes sense to perform submaximal loads before the actual task in order to increase muscle tone again and improve control.
You can find out when is a good time for flexibility training and how best to warm up and “stretch” before sport in part three under the point “Timing for flexibility training”.

I hope you enjoyed this second part and gained new knowledge about flexibility. In the last article of this series, I will address the much sought-after question “How do I become flexible?” and finally give a summary of this complex topic.

Until then,

Your Nil

{:}

WordPress Cookie Plugin by Real Cookie Banner